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Abstract

Denial of Service (DoS) attack is a serious threat for the Internet. DoS attack can consume memory, CPU, and network resources and damage or

shutdown the operation of the resource under attack (victim). A common DoS attack floods a network with bogus traffic so that legitimate users may

not be able to communicate. There are several proposals to traceback the network attack path to identify the source that causes the DoS attack. This is

an effective solution to trace the attacker but it is not preventive in nature. Ingress filtering and Route-based filtering are two proactive approaches to

stop DoS attacks. These solutions check source addresses of incoming packets to ensure they are coming from legitimate sources or traversing through

proper routes. We study several existing schemes that deal with DoS attacks. We describe several network monitoring approaches to detect service

violations and DoS attacks. In addition, we propose a new distributed scheme to reduce monitoring overhead. Finally, a quantitative comparison among

all schemes is conducted, in which, we highlight the merits of each scheme and estimate the overhead (both computation and communication) introduced

by it. The comparison provides guidelines for selecting the appropriate scheme, or a combination of schemes, based on the requirements and how much

overhead can be tolerated.

I. INTRODUCTION

�
NTERNET security lapses have cost the U.S. corporations about 5.7 percent of their annual revenue as reported by

economist Frank Bernhard from University of California at Davis [1]. San Diego Supercomputer Center reported

12,805 denial of service (DoS) attacks over a three-week period in February 2001 [2]. These attacks can be severe if

they last for a prolonged period of time preventing legitimate users from accessing some or all of computing resources.

Imagine an executive of a financial institution deprived of access to stock market updates for several hours or even several

minutes. In [2], the authors showed that whereas 50% of the attacks lasted less than ten minutes, unfortunately, 2% of

them lasted greater than five hours and 1% lasted more than ten hours. There were dozens of attacks that spanned multiple

days. Wide spectrum of motivation behind these DoS attacks exists. They range from political conflicts and economical

benefits for competitors to just curiosity of some computer geeks. Furthermore, cyber terrorism may not be excluded in

the future.

The aim of a DoS attack is to consume the resources of a victim or the resources on the way to communicate with a

victim. A victim can be a host, server, router, or any other kind of entity connected to a network. The attack hinders many

users/clients to contact the victim. Numerous security flaws in the existing systems make them vulnerable to DoS attacks.

Even though many available cryptographic protocols can theoretically provide the desired level of security, they impose

excessive overhead that might degrade the performance of the system. In addition, the software implementation of these

protocols can never be guaranteed to be free of bugs. Inevitable human errors during software development, configuration,

and installation open several unseen doors for attacks. Several DoS attacks are known and documented in the literature

[2], [3], [4], [5]. Flooding the victim’s network with overwhelming amount of traffic is the most common. This unusual

traffic clogs the communication links and thwarts all communications among legitimate users. This kind of attacks may
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result in shutting down an entire site or a branch of the network. This happened in February of 2000 for popular web sites

such as Yahoo, E*trade, Ebay, and CNN for several hours [3]. TCP SYN flooding is an instance of the flooding attacks.

Under this attack, the victim is a host and typically runs a Web server. A Web client usually sends a request for a file to the

Web server using TCP SYN packet. The attacker sends a TCP SYN pretending a desire to establish a connection making

the server reserve buffer for it. The attacker does not complete the connection. Instead, it issues more TCP SYNs, which

lead the server to naively wasting its memory for never-completed connections. Sending such SYN requests with a high

rate consumes the server’s memory and makes it unable to satisfy connection requests from legitimate users. This is an

example of denying services from the users. Other types of flooding includes TCP ACK or RST flooding, ICMP and UDP

echo request flooding, and DNS request flooding [2], [4]. This list is by no means exhaustive. Usually, the attacker does

not use the real IP address of his/her own machine, rather, s/he spoofs the source address of the attacking packets. This

makes it harder to trace down the attacker.

DoS attack can be more severe when an attacker uses multiple hosts over the Internet to attack a victim. To achieve

this, the attacker usually compromises many hosts and deploys attacking agents on them. The attacker signals all agents

to launch an attack simultaneously on a victim. This attack is known as Distributed DoS (DDoS) attack. In this case, even

if it is possible to trace the source(s), it is more difficult to trace the real attacker. Barros [6] shows that DDoS attack can

reach a high level of sophistication by using reflectors. A reflector is like a mirror that reflects light. In the Internet, many

hosts such as Web servers, DNS servers, and routers can be used as reflectors. The servers always reply to a SYN request

in response to a query. The routers send ICMP packets (time exceeded or host unreachable) in response to particular

IP packets. The attackers can abuse these reflectors to launch DDoS attacks. For example, an attacking agent sends a

SYN request to a reflector specifying the victim’s IP address as the source address of the agent. The reflector, without

knowing this, will send a SYN ACK to the victim. There are millions of reflectors in the Internet and any attacker can

use these reflectors easily to flood the victim’s network by sending large amount of packets. Paxson [7] analyzes several

protocols and applications and concludes that DNS servers, Gnutella servers, and TCP-based servers such as Web servers

are potential reflectors. We discuss more on DDoS attacks and the mechanisms to detect and prevent them later in this

paper.

Another threat facing computer networks, especially quality of service (QoS) enabled networks such as Differentiated

Services (DS) networks, is the QoS attacks. In this setting, the attacker is a regular user of the network trying to get more

resources (better service class) than what s/he has signed (paid) for. A QoS network provides different classes of service

for different cost. Differences in charging models of the service classes can entice attackers to steal bandwidth and other

network resources. Such attacks make use of known vulnerabilities in firewall filter rules to inject traffic or spoof the

identity of valid customers with high QoS. Since, the DS framework is based on aggregation of flows into service classes,

valid customer traffic may experience degraded QoS as a result of the injected traffic. Taken to an extreme, the attacks

may result in a denial of service. This creates a need for developing an effective defense mechanism that can automate

the detection and reaction to attacks on the QoS-provisioned network domain. QoS attacks are classified into two kinds:

attacking the network provisioning process and attacking the data forwarding process. Network provisioning involves

configuration of routers in a QoS network. This process can be attacked by injecting bogus configuration messages,
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modifying the content of real configuration messages, and delaying or dropping such messages. Networks can be secured

against such attacks by employing encryption of the configuration messages of the signaling protocols. Attacks on the data

forwarding process are of a more serious in nature. This attack involves injecting traffic into the network with the intent to

steal bandwidth or to cause QoS degradation by causing other customer flows to experience longer delays, higher loss rates

and lower throughput. Habib, et al [8] devise a network monitoring mechanism to detect attacks in QoS domains. This

mechanism measures the Service Level Agreement (SLA) parameters such as delay, loss, and throughput and compares

these measurements with the negotiated values between service provider and user. Employing this monitoring technique, a

service provider can detect any service violation within its network domain. Additionally, the monitor can check whether

excessive flows passing through its domain are destined to a particular network domain or not. This aggregation may

cause DoS attacks targeted to its domain or to any other downstream domains.

In this paper, we discuss several techniques to traceback the attacker who causes DoS attacks. For each technique, we

describe how an attack happens and the procedure to detect it. The limitations of each traceback procedure are analyzed.

The traceback is an aftermath solution. Filtering mechanism can be used to protect networks against DoS attacks. Ingress,

egress, and route-based filtering are discussed in this paper. For QoS-enabled network domains, continuous monitoring

is necessary to detect service violations and bandwidth theft attacks. This violation detection enables the provider to

detect DoS attacks. We discuss stripe-based and distributed monitoring schemes to defeat these attacks. We provide a

quantitative comparison among several schemes used to deal (detect/prevent) with DoS attacks. We highlight the merits

of each scheme and estimate the overhead (both computation and communication) incurred by it. This comparison helps

to decide on selecting the appropriate scheme based on requirements.

II. DOS ATTACKS: DETECTION AND PREVENTION

In this section, we discuss the approaches to detect and prevent DoS attacks using traceback and filtering. The ways

to detect and prevent DoS attacks are shown in Figure 1. There are several ways to detect the source that causes a denial

of service (DoS) attack. IP traceback is one of them. IP traceback can be done using either ICMP traceback messages

or marking packets at the routers. The marking strategies at the routers can be of a deterministic and probabilistic type.

Hash-based IP traceback provides source path isolation engine (SPIE) to track attackers even for low volume of packets.

Monitoring a network can help to detect DoS attacks. One obvious way of monitoring is to log packets at various points

of a network domain. For a QoS network, service level agreement (SLA) violation detection, discussed in Section III, can

help to detect bandwidth theft and DoS attacks. It is to note that traceback is a detection approach rather than to prevent the

attack. Filtering spoofed packets prevents networks from DoS attacks. Ingress/Egress filtering and route-based filtering

are two approaches to prevent DoS attack in the Internet.

We use Figure 2 to demonstrate different ways to launch attacks and take actions against them. In Figure 2, hosts ���
are connected to domains ��� , which are connected to the Internet cloud. When a host sends packets to other hosts in the

Internet, it travels through several routers ��� on its way. These routers are potential candidate to help in detecting and

preventing DoS attacks. In Figure 2, � represents an attacker and � is the victim.
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Fig. 1. Classification of approaches to detect DoS attacks and service violation.

A. Traceback of DoS Attack

Traceback is an effective scheme to determine the attacking source. It is difficult to trace the attack source because

the attacker often spoofs the source IP address. In addition, the Internet is stateless, which means whenever a packet

passes through a router, the router does not store any information (traces) about that packet. When a host sends a packet

to another host over the Internet, it travels through several routers on its way and we can trace the network path that the

attack traffic follows. We discuss several existing studies on how to traceback the attack source when any attack happens.

ICMP Traceback. Bellovin proposed ICMP traceback messages [6], where every router samples the forwarding

packets with a very low probability (1 out of 20000) and sends an ICMP Traceback message to the destination. This

message contains the previous and next hop addresses of the router, timestamp, part of the traced packet, and authentication

information. In Figure 2, while packets are traversing network paths from attacker ��� to the victim ��� the intermediate

routers, ��� , sample some of these attack packets and send ICMP traceback messages to the destination, ��� With enough

ICMP traceback messages, the victim later can trace the network path, ��� �	�
� This work shows a promising solutions

for constructing path from victim to the source involved in attacking. The disadvantage of this approach is that sometimes

ICMP packets can be ignored at routers and these traceback packets can be dropped. The attacker/source can defeat the

authentication mechanism by sending many false ICMP traceback messages to confuse the victim, since the routers send

only few messages.

To address Distributed DoS (DDoS) attack by reflectors, Barros [6] proposes a modification of ICMP traceback mes-

sages. In his refinement, routers sometimes send ICMP messages to the source of the currently being processed packet

rather than its destination. In Figure 2, ��� sends a SYN request to �
� specifying � as the source address of this packet.

�
� sends a SYN ACK to the victim ��� According to the modification, routers on the path ����� �
� will send ICMP mes-

sages to the victim. This reverse trace enables the victim to identify the attacking agent(s) from these trace packets. The

reverse trace mechanism is helpful for defending against DDoS attacks by reflectors and depends only on the number of
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attacking agents rather than the number of reflectors [7]. This achieves scalability because number of available reflectors

is much higher than number of attacking agents on the Internet.

Packet Marking at Routers. Burch and Cheswick [9] proposed to mark packets by inscribing the IP address of the

routers in the header of the data packet themselves, that is no separate message is issued from the routers. The goal of this

marking is that, after an attack, the victim can reconstruct the network path of an attack using information in the marked

packets with high probability. This marking can be deterministic or probabilistic. In the deterministic marking, a router

marks all packets and the packets are marked at all routers. The obvious drawback of deterministic packet marking is that

it may require large packet header that grows with the increase of number of hops along the path. The overhead on routers

will increase to mark every packet. The probabilistic packet marking encodes the local path information with a probability
��� � in the packet header. During flooding attack, huge amount of traffic travels towards the victim. Therefore, there is

a great chance that many of these packets will be marked at routers throughout their journey from the source to the victim.

It is likely that the marked packets will give enough information to trace the network path from the victim to the source of

the attack. In Figure 2, the attack traffic travels through different routers from ��� to � and the routers, ��� , inscribe local

path information on the attack packet header. The victim can reconstruct the path from � � ��� provided that sufficient

packets are sent from the attackers.

�����������������������������������
�����������������������������������

�������������������������������������������������������
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Fig. 2. Different scenarios for DoS attacks. Attacker, ��� , launches attack to the victim  "!#�$� spoofs IP address of host %'& from domain, ()&*!#�,+ uses

hosts %'+ as a reflector to attack the victim. Packets travel through different routers, -/. , which are potential candidates to detect and prevent DoS

attacks.

The probabilistic packet marking (PPM) and traceback are studied in details by Savage, et al [5]. The authors [5]

describe efficient ways to encode addresses and distance metric on the packet to be marked. The distance metric represents

how many hops the attacker is away from the victim. In Figure 2, if there is only one hop between routers � � and �10 ,

the attacker, �	� , is 6 hops away from the victim, � � Suppose, Router � � marks a packet and sets the counter to zero. On

the way of the packet’s trip, every router increments the distance metric. Thus, the victim knows the possible minimum

distance of the attacker in terms of hops. Even though it is not impossible to reconstruct an ordered network path using an
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unordered collections of router samples, it requires the victim to receive a large amount of packets. To solve this problem,

the authors [5] suggest to encode edges, start and end routers of a link, in the attack path rather than using individual

routers. Using distance metric and edges together, it is easy to reconstruct the attack path with reasonable amount of

packets received by the victim. To encode edges, 72 bits (two 32 bits IP addresses and one 8 bits distance metric ) are

required on the IP header. Instead of using two spaces for IP addresses, they use XOR (exclusive or) of two addresses

to save space. For example, in Figure 2, router � � encodes the XOR of � � and ��� on the packet and sets the distance

metric to zero. Other routers on the path just increase the distance metric of this packet, if they don’t decide to mark it

again. When this packet reach the victim, it provides a tuple of address and distance � � ��� ��� , ��� . Some packets will

be marked at router ��� and will provide a tuple � ����� �
	 , ��� to the victim. Some packets will be marked by the last

router to provide � �
	 , �
� because there is no more router after that. As �
	�� ����� �
	�� ��� , it is possible to retrieve all

routers on the path by XORing collected messages at the victim sorted by distances. The required space to mark a packet

can be reduced by fragmenting the address information (XORed value) into some number � of smaller non-overlapping

fragments. When a router decides to mark a packet, it uses one of the fragments and inscribe it into the packet. If enough

packets are sent by the attacker, the victim will receive all fragments to extract all routers along the path. The authors

[5] propose to use identification field (currently used for IP fragmentation) of IP header to encode the distance metric,

fragment of edge, and offset of the fragment. Some solutions are described in [5] to cope with co-existence of marking

and fragmentation of IP packets. This approach can reconstruct most network paths with 95% certainty if there are about

2000 packets available to traceback and even the longest path can be resolved with 4000 packets. For DoS attacks, this

amount of packets is very much obtainable because the attacker needs to flood the network to cause DoS attacks. Moore,

et al report that some severe DoS attacks had a rate of thousands of packets per second [2].

To devise a better packet marking algorithm, Song and Perrig [10] use network topology information to compress the

representation of the edge state. For example, if the victim � knows the Internet topology graph connected to domain

� 0 , all routers along the path to the victim do not need to encode the actual IP address to mark a packet. Instead, the

routers can mark packets with hashed values of the IP addresses. The victim has the topology tree and can traverse the tree

to extract IP address from the hashed values. This tree traversal enhances the path recovery scheme to detect distributed

DoS attacks and improves the robustness of the whole marking scheme for trace-backing. Dean, et al [11] model the

traceback problem as a polynomial reconstruction problem and use techniques from algebraic coding theory to provide

robust methods of reconstructing the network path.

Snoeren, et al [12] propose a hashed based IP traceback technique that uses source path isolation engine (SPIE). The

SPIE generates audit trails of traffic and can trace origin of single IP packet delivered by a network in recent past. The

SPIE uses a very efficient method to store the information that a packet traversed through a particular router. To achieve

this, � bits of the hashed values of the packet is used to set an index of a ��� -bit digest table. When a victim detects an

attack, SPIE samples all digest tables and stores it to query about the path of attack packets. Topology information is used

to construct a graph from the victim to the neighbor networks. The SPIE simulates a reverse-path flooding from the victim

by examining the digest table to check the path existed at the time the packet was forwarded. Querying the routers along

the paths from the victim eventually reconstructs the attack path. The SPIE needs to enquire the routers to sample digest
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tables soon enough after the packet was forwarded by a router. Otherwise the record of the packet at the router will be

replaced by record of new packets. The main advantage of SPIE over ICMP traceback messages and PPM is that SPIE

can traceback the attack path even for low volume packets received at the victim.

Limitations of Probabilistic Packet Marking. The Probabilistic Packet Marking (PPM) has potential weaknesses

because PPM is vulnerable to spoofing of marking field in the IP header by the attackers [13]. It is not certain that all

attack packets will be marked by any of the intermediate routers. If each router has a marking probability � and there

are � hops from the attacker to the victim, then the probability that a packet reaches the victim without marking by any

intermediate router is � ��� ����� . Many of the packets can reach the victim without being marked at all and these packets

will provide confusing information to the victim about the original path of the attack. In Figure 2, � ��� � is a forged

path because the attacker ��� uses � � ’s IP address as its source address and this packet was not marked by any of the

intermediate routers. This forged path might be confused as an attack path by the victim. The victim will not be able

to distinguish between marked packet and unmarked packet because the attacker can provide false marking information

on the packet header. The victim will have combination of true attack path and forged path and it is hard to identify

which one is the true attack path. Park and Lee [13] show that for single-source DoS attacks PPM is effective to localize

the origin of attacks. Even if it can not pin down the attacker position in the Internet, the PPM can identify a small set

of sources as potential candidates for a DoS attack. In distributed DoS (DDoS) attack, which is not uncommon in the

Internet, numerous number of sources are used to attack a victim. Attacker �	� can hack machines in different domains

and use them, � ��� � � in Figure 2, as attacking agents to attack the victim. When the attacker signals the agents, they

send packets to the victim � simultaneously. Each source can send small amount of packet to the victim and these will

accumulate if large number of agents are used to attack the victim. The traceback is more difficult in this case because

each attack agent � � can send packets that are not enough to identify the source. The attacker can increase the uncertainty

in the IP traceback for DDoS attacks [13]. Thus, PPM is vulnerable to distributed DoS attack.

B. Preventing Attacks

We can take preventive solution for DoS attacks caused by IP spoofing. Filtering spoofed packets whenever they are

detected is an obvious solution. We discuss several packet filtering techniques in this subsection.

Ingress Filtering. Incoming packets to a network domain can be filtered by a firewall or at ingress routers that perform

customs-type checking. These entities verify the identity of the packets entering into the domain, like an immigration

security system at the airport. Firewalls are effective to stop attacks based on protocol, port, and IP address information.

Ingress filtering, proposed by Farguson and Senie [14], is a more rigid and restrictive mechanism to drop traffic with IP

address that does not match a domain prefix connected to the ingress router. As an example, in Figure 2, the attacker

��� resides in D1=a.b.c.0/24, which is provided Internet connectivity through � � . The attacker wants to launch a DoS

attack to the victim � that is connected to domain � 0 . If the attacker spoofs IP address of host � � of domain � � having

network prefix x.y.z.0/24 for this attack, an input traffic filter on the ingress link of � � thwarts this spoofing. � � only

allows traffic originating from source addresses within the a.b.c.0/24 prefix. Thus, the filter prohibits an attacker from

using invalid source addresses from outside of the prefix range. Ingress filtering can drastically reduce the DoS attack by

IP spoofing if all domains use it. Similarly, filtering foils the DDoS attack using reflectors. In Figure 2, Ingress filter of
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� � will discard packets destined to the reflector �
� and specifying ��� � address in the source address field. Thus, these

packets will not be able to reach to the reflector. It is hard to deploy ingress filters in all Internet domains. If there are some

unchecked points, it is possible to launch DoS attacks from that points. Sometimes legitimate traffic can be discarded by

an ingress filtering when Mobile IP is used to attach a mobile node to a foreign network. Packets from a mobile node will

have source addresses that do not match with the network prefix where the mobile node is currently attached.

Unlike ingress filtering, egress filtering [15] resides at the exit points of a network domain and checks whether the

source address of exiting packets belong to this domain. If not, egress filter will discard the packet to stop attack by

spoofed packets. Egress filters do not help to save resource wastage of the domain where the packet is originated but it

saves other domains from possible attacks by these packets. Beside the placement issue, both ingress and egress filters

have similar behavior.

Route-based Filtering. Park and Lee [16] propose route-based distributed packet filtering. This filter differs from

ingress filtering in a sense that, unlike ingress filtering, route-based filters use the route information to filter out spoofed IP

packets. For example, in Figure 2, say attacker ��� belongs to domain �
� is attempting a DoS attack to the target � that

belongs to domain � 0 and uses the spoofed address � � belongs to domain � � . The filter at domain �
� would recognize

that a packet originated from domain � � and destined to target � should not travel through domain �
� . Then, the filter

at � � will discard the packet. The power of route-based filter is that it does not use/store individual host addresses for

filtering, rather it uses the topology information of Autonomous System (AS). The authors of [16] show that with partial

deployment of route-based filters, about 20% in the Internet AS topologies, it is possible to achieve a synergistic filtering

effect that prevents spoofed IP flows reaching other ASes. These filters need to build route information by consulting BGP

routers of different ASes. Route on the Internet changes with time [17] and it is a challenge for route-based filters to be

updated in real time.

All filters fall short to detect IP address spoofing from the same domain the attacker resides in. For example, in Figure

2, if attacker ��� uses some unused IP addresses of domain � �
� filters can not stop such forged packets to reach the victim

��� For for this case, IP traceback is a good candidate to locate the site(s) that could have sent packets and take action

accordingly [16].

III. MONITORING TO DETECT SERVICE VIOLATIONS AND DOS ATTACKS

An Internet service provider needs to monitor its network domain to ensure the network is operating well. One obvious

way of monitoring is to log packets at various points throughout the network and then extract information to discover

the path of any packet [18]. This scheme is useful to trace an attack long after the attack has been accomplished. The

effectiveness of logging is limited by the huge storage requirements especially for high speed networks. Stone [19]

suggested to create a virtual overlay network connecting all edge routers of a provider to reroute interesting flows through

tunnels to central tracking routers. After examination, suspicious packets are dropped. This approach also requires a great

amount of logging capacity.

A QoS network domain needs continuous monitoring of the network for possible service violations and bandwidth theft

attacks. Attackers can impersonate a legitimate customer by spoofing flow identities. Network filtering [14] at routers

can detect such spoofing if the attacker and the impersonated customer are on different domains, but the attacks proceed
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unnoticed otherwise. In addition to different traffic classes, a QoS domain has to support best effort (BE) traffic that might

lead to SLA violations because edge routers do not have control over BE traffic. The service provider detects any service

violation that causes other users to suffer from getting the negotiated QoS. In case of DoS attack, numerous number of

flows from different sources are destined to a victim. These flows aggregate on their way as they get closer to the victim.

Monitoring can help an upstream network domain to detect these high bandwidth aggregates that could lead to DoS attacks

in downstream domains [8], [20].

SLA parameters such as delay, packet loss, and throughput are measured to ensure all users are getting their target

share. Delay is an end-to-end latency measurement; packet loss is the ratio of total packets dropped from a flow1 to the

total packets of the same flow entered into the domain; and throughput is the total bandwidth consumed by a flow inside

a domain. Delay and loss are important parameters to monitor a network domain because if a network domain is properly

provisioned and no user is misbehaving, the flows traversing through the domain should not experience high delay or loss

inside that domain. Excessive traffic due to attacks changes the internal characteristics of a network domain. This change

of internal characteristics is a key point to monitor a network domain. Bandwidth is used to detect whether any flow is

getting more than its share, which causes other flows to suffer. We employ these three parameters to detect SLA violations

and DoS attacks. Although, jitter (delay variation) is another important SLA parameter, it is flow-specific and therefore, is

not suitable to use in network monitoring. The SLA parameters can be estimated with the involvement of internal (core)

routers in a network domain or can be inferred without their help. A large body of research has focused on measuring

delay, loss, and throughput in the Internet [21], [22]. The measurement of SLA parameters inside a network domain for

monitoring purposes is described later when we explain the monitoring schemes.

We describe two monitoring schemes in this paper to detect SLA violations. One scheme uses the loss inference

mechanism using striped unicast probing. We refer to this as stripe-based scheme to monitor QoS network domain. We

improve on the stripe-based monitoring scheme by distributing the probing responsibility over each edge routers in the

second scheme, which we call the distributed monitoring scheme in this paper. Distributed monitoring scheme has less

monitoring overhead and can detect attacks on both directions of a link. Both schemes have an entity, SLA Monitor

(SLAM), to collect statistics, analyze them, and decide about violations.

A. Stripe-based Monitoring

To monitor a network domain, SLA components such as delay, loss, and throughput are measured and verified with

pre-defined values to detect service violation. This section describes several approaches to measure each SLA parameter

and how to use the collected data to detect SLA violations.

Delay Measurements. Delay bound guarantees made by a network provider to customer flows are for the delays

experienced by the flows while traversing between ingress and egress edges of the provider’s domain. For each packet

passing through an ingress router, the ingress copies the packet’s IP header into a new packet with a certain pre-configured

probability ����������� . The ingress encodes the current timestamp
	�

�
�

������� into the payload and marks the protocol field of the

IP header with a new value. An egress router recognizes such packets and removes them from the network. Additionally,

the egress router computes the delay for a packet of flow � from the difference between the two timestamps. We ignore
�
flow can be a micro flow with five tuples (addresses, ports, and protocol) or an aggregate one that is combined with several micro flows.
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minor drifts of the clocks since all routers are in one administrative domain and can be synchronized fairly accurate. The

egress sends a message with the packet details and the measured delay to the monitor, SLAM. At the SLAM, packets are

classified as belonging to customer � . Then, the SLAM updates the average packet delay of each customer’s traffic as an

exponential weighted moving average (EWMA) to put a small weight to past history.

If the average packet delay exceeds the delay guarantee in the SLA, i.e. ����� ���	�
���
�
����� � � � ������� , we conclude that it is

an indication of an SLA violation. If the network is properly provisioned and all flows do not misbehave there should not

be any delay greater than ��� � � � ������� for any customer � . This high delay can be caused by some flows that are violating

their SLAs or bypassing the SLA checking, which is an attack. If the delay exceeds a certain threshold, the monitor needs

to probe the network for loss. Loss measurement is used to isolate congested links. The congested links are necessary to

detect egress and ingress routers involved in high traffic paths, which helps to detect and control DoS attacks respectively.

Loss Measurements. Packet loss guarantees made by a provider network to a customer are for the packet losses

experienced by its conforming traffic inside the provider domain. Measuring loss by observing packet drops at all core

routers is an easy task. It imposes, however, excessive overhead on the core routers to record each drop entry and

periodically send it to the SLA monitor. The monitor can match the destination IP address prefix to detect flows going to

a particular network domain for possible DoS attacks. We refer to this scheme as Core when we compare all schemes in

the next section.

0

k

R R21

Fig. 3. Binary tree to infer loss from source � to receivers - � and -��

The stripe-based probing mechanism [23] is adopted to infer loss characteristics inside a domain without relying on

the core routers. This monitoring scheme sends a series of probe packets, called a stripe, with no delay between the

transmission of successive packets (usually three packets). We describe how the loss inferring scheme works for unicast

traffic as it is described in [23]. Readers are referred to [24] for multicast traffic. For a two-leaf binary tree spanned by

nodes � , � , ��� , � � , stripes are sent from the root � to the leaves to estimate the characteristics of one link, say � � �!�
(Figure 3). The first two packets of a 3-packet stripe are sent to � � and the last one to � � . If a packet reaches to any

receiver, we can infer that the packet must reached the branch point � � If �"� gets both packets of a stripe, it is likely that

��� will receive the last packet of the stripe. The transmission probability, �"# , for node � is expressed in equation (1)

�$#��
%�&(')%�&+*
% & '-, & * (1)

where
% 


represents the empirical mean of a binary random variable which takes value 1 when all packets sent to � 


reach their destination and 0 otherwise. The mean is taken over � identical stripes. The loss of � � � � is inferred using
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the loss of its parent, � . A complementary stripe is sent similarly to estimate the characteristics of link � � � � . By

combining estimates of stripes down each such tree, the characteristics of the common path from ��� � is estimated. This

inference technique extends to general trees. Consider an arbitrary tree where for each node � , � � � � denotes the subset

of leaves descended from � . Let, � � � � denote the set of ordered pairs of nodes in � � � � descended from � . For each

� � � � ��� ��� � � � � , a stripe should be sent from the root to the receivers � � and � � .
The unicast probing scheme is extended in [8] for routers with active queue management, e.g., 3-color RED [25]. This

scheme is used to monitor loss inside a QoS network domain. Since, a QoS network has several traffic classes, it is

necessary to send probes belonging to different QoS classes. An active queue, such as RED, is configured with different

parameters to achieve service differentiation. The probability of acceptance for each class of traffic in the active queue

can be calculated using the configuration parameters. Let, � 

, be the percentage of � ��� class of probe packets accepted

by the active queue, where � is the set of all traffic classes. Link loss can be inferred by subtracting of transmission

probability of equation (1) from 1, i.e. ��� � # . Therefore, if � 
 , is the inferred loss for traffic class � , the overall loss is

expressed as shown in equation (2), where � 
 is number of samples taken from � types of traffic. Only non-zero loss of

each class is used to estimate � ��� ��� � � � . For details, see [8].

� ��� � � � � � �
� 

	�� � 
�
 � 
�
 � 
� 

	�� � 
 (2)

Throughput Measurements. The objective of checking throughput violation is to ensure nobody is consuming extra

bandwidth (beyond the SLA), which starves others. This can not be detected by a single ingress or egress router if the

user sends at a lower rate than SLA through multiple ingress routers. To each ingress, it does not violate the SLA but as

a whole it does. The service provider may allow a user to take extra bandwidth as long as everybody else is fine. This

depends on the policy of the service provider.

The monitor measures throughput by probing globally all egress routers when it sees any violation in delay and loss.

Egress routers of a QoS-domain maintain the aggregate rate for each user. This rate is a close approximation of bandwidth

consumption by each flow inside the domain [8]. When the monitor gets throughput of all flows from egress routers, it

calculates the throughput for user � , as: �"� � ���
�� � �


� , where �



� is bandwidth consumed by user � at edge router �

and � is the total number of edges. If �"��� ��� � � ��� then it is an SLA violation, otherwise it is not. To detect bandwidth

theft that does not increase the internal characteristics of the network, the monitor can periodically poll egress routers.

Violation Detection. When delay, loss, and bandwidth consumption exceed the pre-defined thresholds, the monitor

decides on possible SLA violation. The monitor knows the existing traffic classes and the acceptable SLA parameters per

class. High delay is an indication of abnormal behavior inside a network domain. If there is any loss for the guaranteed

traffic class and if the loss ratios of other traffic classes exceed certain levels, an SLA violation is flagged. This loss can

be caused by some flows consuming bandwidths beyond their ��� � ��� � Bandwidth theft is checked by comparing the total

bandwidth achieved by a user against the user’s ��� � ��� . The misbehaving flows are controlled at the ingress routers.

To detect DoS attacks, set of links � with high loss are identified. For each congested link, � �
� 
 � � � ��� � � the tree is

pruned into two subtrees. One subtree has egress routers as leaves through which high aggregate bandwidth flows are

leaving. This subtree is obtained from leaves descendant from � � . If many exiting flows have the same destination IP



12

prefix, we can decide that either this could be a DoS attack or they are going to a popular site [20]. Decision can be taken

with consulting the destination entity. If it is an attack, we can stop this by triggering filters at the ingress routers that are

leaves of the other subtree descendant from � 
 and feeding flows to the congested link. For each violation, the monitor

takes action such as throttling a particular user’s traffic using a flow control mechanism.

B. Distributed Monitoring

The single-point probing of stripe-based scheme can be improved by distributing the probing agents over all edge

routers. We propose the distributed monitoring approach to reduce the monitoring overhead to detect service violation

and DoS attacks. This mechanism uses an overlay network infrastructure. Peers (edge routers) of an overlay network

know each other by forming a virtual network on top of the physical network. Figure 4(a) shows the spanning tree of a

network topology. The edge routers of this network domain form an overlay network among themselves, Figure 4(b).

E1
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E5

C4

E6

Core RouterEdge Router

E2

E7E4

E3 C5

C2C3

(a)
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E6 E7

Peers (Edge Router)

E2

E5E4

E3

(b)
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E2

E5E7E4

(c)

Fig. 4. Network monitoring using the distributed mechanism. (a) Spanning tree of a network domain (b) Overlay architecture, every node has a virtual

link with each of its neighbors (c) Internal links’ direction for each probing.

In the distributed monitoring approach, each edge router knows its right and left neighbors and can probe part of the

network. The SLA Monitor (SLAM) sits at the root of the spanning tree. The SLAM probes the network regularly for

unusual delay patterns inside the network. The delay and throughput measurements are same as described in stripe-based

scheme. The two schemes differ in measuring loss. Service violation can be detected without exact loss values, rather it

requires whether a link has higher loss than specified threshold or not. The link with high loss is referred to as a congested

link. The goal of distributed probing is to detect all congested links.

When delay goes high, the SLAM triggers agents at different edge routers for loss probing. Each edge router probes its

right neighbor first. In Figure 4(b), edge router � � probes the link � ������� , ��� probes the link ��� ��� 0 , � 0 probes the

link � 0�����	 , ��	 probes the link ��	 ����� � and so on. Let, ��� be a boolean random variable that represents the output

of probe � �
	 � where 	 is the set of probes needed. � � takes on value � if the measured loss exceeds the threshold in

any link throughout the probe path and � otherwise. For example, if the outcome of probing � � ����� path is � , it means

either � ��� � � , � � � � � , � � ����� , or a combination of them is congested. The internal links of each probe are shown



13

in Figure 4(c). If the outcome is � � definitely all of the internal links are not congested. In this way, we write equations

to express all internal links in terms of probe outcomes. The set of edge routers that will perform probing, left and right

neighbors of each edge router, and the equations to express the congestion status of internal links in terms of outcome of

each probe can be obtained by traversing the tree using Depth First Search from the root.

We note that loss in path � � � ��� might not be same as loss in path ��� � � � . This path asymmetry phenomenon is

shown in [26]. The distributed monitoring can detect high loss in both directions of a link. To solve the set of equations

in the first round of probing, we need another round of probing in the clock-wise direction from � � to ��� � � � to � � ,

and so on. These two sets of equations are enough to isolate congested links with close approximation. The distributed

monitoring can detect congestion on any non-overlapping probe path in any direction. The path may have arbitrary number

of internal links. This is because if we have congestion in one path, we have sufficient probes to isolate each internal link

for this probe path. As boolean equations may not have unique solutions in some cases, distributed monitoring can localize

congested links on overlapping paths with close approximation.

We give a brief description of the algorithm for detecting congested links. (The details are not given here due to space

limitation.) If the outcome of any probe is zero (loss does not exceed the threshold), a zero value is assigned to all internal

links that comprise the probe path on the probing direction. At the end of probing, if each internal link is assigned either

� or � values, we are done. But sometimes, we won’t be that lucky. Having congestion on links that affect multiple

probe paths in same direction will eventually lead to some boolean equations that do not have unique solutions. In that

case, we can use some special set of probes that were not used before or apply stripe-based probing only to a part of the

tree to determine the exact locations of the congested links. We can even report all the internal links as congested from

the unsolved equations, which is a close approximation of the actual results. Because this situation is possible only when

majority of the internal links among the total links in the equation set are congested in a probe path. After identifying links

with high loss, we prune the whole tree
�

to isolate ingress and egress routers to detect high bandwidth aggregates and

detect service violation and DoS attacks as it is described in violation detection of stripe-based scheme. The distributed

monitoring scheme can be extended for QoS networks using probes with different classes similar to what is described in

stripe-based method.

Advantages. The advantages of using distributed monitoring are listed as below:

1. The distributed scheme requires less number of total probes, � � � � , to estimate links with high loss than stripe-based

scheme, which requires � � � � � where � is number of edge routers in the domain.

2. The distributed scheme is able to detect violation in both directions of any link in the domain, whereas the stripe-based

can detect any violation only if the flow direction of misbehaving traffic is same as the probing direction from the root.

To achieve same ability like distributed one, the stripe-based needs to probe the whole tree from several different points,

which will increase the injected traffic in the domain.

3. The distributed scheme can use TCP based loss measurement to detect loss of both directions in one probe cycle (e.g.

Sting [26]).

4. In stripe based scheme, two leaves/receivers are probed at a time. It takes long time to complete probing the whole

tree. If all leaves are probed simultaneously, � � � � � link will face huge amount of traffic at that time. On the other hand,
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the distributed scheme can do parallel probing naturally.

IV. COMPARISON OF DIFFERENT SCHEMES

In this section, we conduct a quantitative analysis of the overhead imposed by each scheme used to detect/prevent

DoS attacks. The schemes we compare here are: Ingress Filtering (Ingf), route-based packet filtering (Route), traceback

with probabilistic packet marking (PPM), core-assisted scheme that observes packet drops at core routers and sends drop

history to the monitor to detect attacks (Core), stripe-based monitoring (Stripe), and distributed monitoring using overlay

network architecture (Distributed). We account for the communication overhead due to packets injected into a network for

probing as well as the computation overhead due to extra processing at routers. The communication overhead is computed

as the number of extra bytes (not packets) injected per unit time. For computation overhead, the extra processing at routers

could contain: more address lookups, changing some header fields, checksum re-computation, and any CPU processing

needed by the scheme. For simplicity, we charge the schemes only one processing unit ( � ) per packet that needs one

or more of the aforementioned processing. We consider a domain
�

with � edge routers and � core routers. We

assume there are � flows traversing through each edge router and each flow has � packets on average. We define � as the

percentage of misbehaving flows that cause DoS attacks.

Filtering techniques do not incur any communication overhead but they need one extra address lookup (for source

address) per packet. Ingress filtering has a total computation overhead of � 
 � 
 � 
 � per unit time because it checks

the source address of every packet. We need to deploy ingress filters in every domain in the Internet to effectively stop

all possible attack. The route-based filtering scheme, on the other hand, does not require every single domain to have a

filter. Park, et al showed that placing this filter at approximately 20% of all autonomous systems can prevent DoS to a

great extent [16]. For a domain that deploys a router-based filter, the overhead is the same as the ingress filter. Globally

speaking, the overhead of route-based filtering is one fifth of the overhead of ingress filtering on the average. In our

comparison, we use � ����� � �	� � & �	��
 � � �� � � ��� � �	� �
� �
��� .
The PPM does not incur any communication overhead but adds one extra processing unit ( � ) for every packet that gets

marked at all intermediary routers. Traceback with PPM needs to mark packets with probability � at each router on the

path to the victim. If a packet passes through � hops, on the average, in the network domain
�

, the computation overhead

is � 
 � 
 � 
 � 
 � 
 � per unit time.

The monitoring schemes inject probe traffic into the network and add computation overheads as well. The total injected

probes and size of each probing packet are used to calculate the communication overheads in terms of bytes. The Core

scheme depends on the number of packets core routers send to the monitor to report drop history. The drop history at each

core router depends on the flows traversing the network domain and the percentage of these flows that are violating their

SLAs at a particular time. For the domain
�

, if � bytes are required to record drop information of each flow, then each

core needs to send � ��� ��� � � ��������� �� ��� # ��
 � 
�� � � control packets to the monitor. To obtain loss ratio, the monitor queries all

edges for packet count information of the misbehaving flows. Every edge will reply to this query. The total number of

packets exchanged is � �
� � � � 
 � packets. Therefore, the communication overhead is � �!��� � � 
 � 
 � �#" � � 	 � ��$�� .
The � ��" �
� 	 � ��$�� is a configurable parameter. The computation overhead is � �
�%� � � 
 � 
 � 
 � � where � is the

average number of hops a packet traverses.
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In the stripe-based monitoring scheme, a stripe of � packets is sent from the monitor to every egress routers pair. For

the network domain
�

, the total number of probing packets is � 
 � � � � � 
 � � � � � 
 �
� where

�
is the frequency by

which we need to send stripes per unit time. The communication overhead is � 
 � � � � � 
 � � � � � 
 � 
 � �#" � � 	 � ��$�� �
The computation overhead is � 
 � � � � � 
 � � � � � 
 � 
 � 
 � � where � is the average number of hops a packet

traverses.

For the distributed monitoring, each edge router probes its left and right neighbors. If it requires
�
� probes per unit time,

the communication overhead is � 
 � 
 �
�

 � ��" �
� 	 � ��$�� per unit time. The computation overhead is � 
 � 
 �

�

 ���
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Fig. 5. Overhead per unit time for the network domain shown in Figure 4 with parameters F=100,000 flows, s=3 packets, f=20, ��� =30, and average

packets per flow is 10. Filtering and PPM does not have communication overhead

To visualize the differences among all schemes, we plot the computation and communication overhead for the domain

shown in Figure 4 with the following parameters: number of edge routers � is 7, number of core routers � is 5, the stripe

length s is 3 packets, number of flows F is 100,000, frequency of probing f is 20 and
�
� is 30. Figure 5(a) shows that filters

and PPM have much higher computation overheads than monitoring schemes. Note that X-axis carries two parameters:

the marking probability, which is used for PPM scheme and the ratio of misbehaving flows for the rest of the schemes. The

gain of the Distributed scheme over the Stripe scheme is not significant in this example but the difference will be much

higher when the number of edge routers is high. Figure 5(b) compares the communication overhead of all schemes except

filtering and PPM because they do not have any communication overhead. It shows probes injected by Stripe consumes

less than 100K bytes of bandwidth per unit time—less than 0.2% of the capacity of an OC3 link. The Distributed scheme

consumes less than the Stripe one. The communication overhead of the Distributed and Stripe schemes are lower than that

of the Core scheme. This is because the control packet size of Core is larger than the probe packet size. Core uses control

packet size equal to the maximum transmission unit of the network to minimize total packets needs to be sent whereas the

probe packet size is 20 bytes with 20 bytes of IP header.

We summarize some important features of all schemes in Table I. Ingress filtering and core-assisted monitoring have

high implementation overhead because the former needs to deploy filters at all ingress routers in the Internet and the latter

needs support from all edge and core routers in a domain. All monitoring schemes need clock synchronization, which is

an extra overhead but they can detect service violations as well. Filters are proactive in nature and all other schemes are

reactive. Filters can detect attacks by spoofed packets whereas rest of the schemes can detect attack even the attacker does
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Property PPM Ingress Filtering Route-based Core-assisted Stripe Distributed

Overhead attack number of number of number of routers, routers,

depends on volume incoming incoming flows violating topology, topology,

packets packets SLAs attack traffic attack traffic

Implementation all routers all ingress all routers of all edge and all edge all edge

overhead edge routers selective domains core routers routers routers

Clock — — — at edge and at edge at edge

synchronization core routers routers routers

Response reactive proactive proactive reactive reactive reactive

SLA violation no no no yes yes yes

detection

Detect attacks any IP spoofed IP spoofed IP any IP any IP any IP

initiated from other from other

using domains domains

TABLE I

COMPARISON AMONG DIFFERENT SCHEMES TO DETECT/PREVENT SERVICE VIOLATIONS AND DOS ATTACKS

not use spoofed IP addresses from other domains.

V. SUMMARY

We have investigated several methods to detect service level agreement violations and DoS attacks. Both preventive

and reactive methods are discussed and compared among each other. IP traceback is an efficient method to locate the

source of an attack with close proximity by probabilistic marking packets at routers. This is used after realizing that an

attack has happened. Hash-based IP traceback provides a source path isolation engine (SPIE) to identify the source of

a particular IP packet. Thus, SPIE can detect network path of an attack even for low volume of packets received by the

victim. Ingress filtering provides safety against IP spoofing by checking the source address of a packet. The route based

packet filtering uses network topology information to filter out spoofed packets. Strategic placing of route based filters

make the deployment attainable. Both filtering approaches are preventive in nature and can be used along with a traceback

mechanism. When filters fail in detecting an attack, traceback provides ways to locate and possibly punish an attacker.

We showed that bandwidth theft attacks are likely to happen in a QoS network and network monitoring can detect service

violations as well as DoS attacks. We briefly described stripe-based and distributed network monitoring schemes in this

paper. The on-demand probing of the monitoring schemes reduce the extra traffic injected by the probes. Both monitoring

approaches can be integrated with an admission control scheme to dynamically regulate traffic and stop an attack as soon

as it is detected. Furthermore, the monitoring techniques can be used in any general network architecture (not only a QoS

network).
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